On the Hierarchical Product of Graphs and the Generalized Binomial Tree
نویسنده
چکیده
In this paper we follow the study of the hierarchical product of graphs, an operation recently introduced in the context of networks. A well-known example of such a product is the binomial tree which is the (hierarchical) power of the complete graph on two vertices. An appealing property of this structure is that all the eigenvalues are distinct. Here we show how to obtain a graph with this property by applying the hierarchical product. In particular, we propose a generalization of the binomial tree and some of its main properties are studied.
منابع مشابه
On the Zagreb and Eccentricity Coindices of Graph Products
The second Zagreb coindex is a well-known graph invariant defined as the total degree product of all non-adjacent vertex pairs in a graph. The second Zagreb eccentricity coindex is defined analogously to the second Zagreb coindex by replacing the vertex degrees with the vertex eccentricities. In this paper, we present exact expressions or sharp lower bounds for the second Zagreb eccentricity co...
متن کاملGeneralized Degree Distance of Strong Product of Graphs
In this paper, the exact formulae for the generalized degree distance, degree distance and reciprocal degree distance of strong product of a connected and the complete multipartite graph with partite sets of sizes m0, m1, . . . , mr&minus1 are obtained. Using the results obtained here, the formulae for the degree distance and reciprocal degree distance of the closed and open fence graphs are co...
متن کاملGraph product of generalized Cayley graphs over polygroups
In this paper, we introduce a suitable generalization of Cayley graphs that is defined over polygroups (GCP-graph) and give some examples and properties. Then, we mention a generalization of NEPS that contains some known graph operations and apply to GCP-graphs. Finally, we prove that the product of GCP-graphs is again a GCP-graph.
متن کاملThe generalized hierarchical product of graphs
A generalization of both the hierarchical product and the Cartesian product of graphs is introduced and some of its properties are studied. We call it the generalized hierarchical product. In fact, the obtained graphs turn out to be subgraphs of the Cartesian product of the corresponding factors. Thus, some well-known properties of this product, such as a good connectivity, reduced mean distanc...
متن کاملThe Generalized Wiener Polarity Index of some Graph Operations
Let G be a simple connected graph. The generalized polarity Wiener index of G is defined as the number of unordered pairs of vertices of G whose distance is k. Some formulas are obtained for computing the generalized polarity Wiener index of the Cartesian product and the tensor product of graphs in this article.
متن کامل